ETHZ ASL

Logo

Datasets and open-source code from the Autonomous Systems Lab (ASL) at ETH Zurich, led by Prof. Roland Siegwart.

Panoptic Multi-TSDFs Data

Year: 2022
DOI: 10.3929/ethz-c-000788335

Datasets for the Panoptic Multi-TSDFs project, including a synthetic indoor “flat” dataset rendered in Unreal Engine and supplementary panoptic data for RIO sequences to run the panoptic mapping pipeline.

Code: panoptic_mapping • Papers: IEEE ArXiv

Panoptic mapping flat dataset runs Panoptic mapping flat dataset run 2 Panoptic mapping changes overview

Flat Dataset

  • Two trajectories in a changing indoor environment with panoptic annotations
  • Per frame: color PNG, depth TIFF (m), panoptic GT labels, Detectron2 predictions and metadata, pose, timestamps
  • Ground-truth structure: flat_<RunNo>_gt_10000.ply
  • Utility files: label maps, detectron labels, change log, intrinsics
  • Simulator configuration (airsim.yaml), corrections, and waypoint logs included

RIO Demo Data

  • Additional panoptic labels and point clouds for RIO scan IDs: 0cac7578-8d6f-2d13-8c2d-bfa7a04f8af3, 20c9939d-698f-29c5-85c6-3c618e00061f, 2451c041-fae8-24f6-9213-b8b6af8d86c1, ddc73793-765b-241a-9ecd-b0cebb7cf916, ddc73795-765b-241a-9c5d-b97744afe077, f62fd5f8-9a3f-2f44-8b1e-1289a3a61e26
  • Per sequence: panoptic labels (GT and Detectron2), per-sequence ground-truth point clouds, combined scene point clouds, label maps
  • Original RIO data must be downloaded separately: RIO dataset

Downloads

Citation

L. Schmid et al.,
“Panoptic Multi-TSDFs: a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency”, IEEE International Conference on Robotics and Automation (ICRA), 2022.

Tags: panoptic, mapping, tsdf, synthetic, indoor