CVAE Exploration Planning Data
Data accompanying the CVAE exploration planning project, providing local maps with supervision signals for conditional variational autoencoder and CNN models used in learning-based exploration.
Repository: cvae_exploration_planning • Preprint on ArXiv
Data Layout
CVAE_dataset.npy: Local maps with best actions from a teacher planner (supervision for CVAE)CNN_dataset.npy: Local maps with random actions (CNN training set)test_worlds.zip: Test worlds<environment>_<no>.p: Pickled test world<environment>_<no>.txt: Initial pose[x, y, yaw]
Additional utilities for processing and ROS playback are in the panoptic_mapping repository.
Downloads
- Dataset landing page: https://doi.org/10.3929/ethz-c-000788332
- CVAE dataset (326.4 MB): https://doi.org/10.3929/ethz-c-000788332
- CNN dataset (1.0 GB): https://doi.org/10.3929/ethz-c-000788332
- Test worlds (56.5 KB): https://doi.org/10.3929/ethz-c-000788332
Citation
L. Schmid, C. Ni, et al.,
“Fast and Compute-efficient Sampling-based Local Exploration Planning via Distribution Learning”, IEEE Robotics and Automation Letters (RA-L), 2022.
Tags: exploration, planning, learning, mapping